
AFSKAFSK

What is AFSK?What is AFSK?
Normal radios are designed to transmit audio and voice signals, not digital signals. Therefore to use these radios to transmit

digital messages the digital information (bits) have to be encoded into an audio message that can be transmitted by those
radios. This is where AFSK comes in. AFSK stands for Audio Frequency-Shift Keying and it encodes the digital bits into two audio
tones, a space tone that typically encodes the ‘0’ bit and a mark tone that typically encodes the ‘1’ bit.

AFSK is popular amongst Radio Amateurs and is used for the for the Automatic Packet Reporting System (APRS). It was also
used in early telephone-line modems. Almost all AFSK modems these days follow the Bell 202 speciMcation. Bell 202 enables a
half-duplex communication at 1200 bit/s, using a mark tone (‘1’ bit) of 1200 Hz and a Space tone (‘0’ bit) of 2200 Hz.

The basic set-up for AFSK transmission is shown in the block diagram bellow.

When transmitting AFSK over a radio, like in a radio amateur set-up, the AFSK modulation is done by a TNC (terminal node
controller). The TNC is also responsible for packet/frame assembly. The computer communicates the data to transmit to the
TNC over a USB or a RS-232 interface. The TNC takes the raw data, assembles it into a frame, typically is a AX.25 frame, and
encodes and modulates the frame into the audio band using AFSK. The resulting audio signal is then input into a Radio which in
turn FM modulates the audio signal into the RF band, normally either VHF or UHF, which is transmitted over air.

Reception is done in reverse order, the Radio demodulates the RF signal and feeds the resulting audio tone into the TNC which
demodulates the audio signal, decodes the bits, de-assembles the packets and transmits the received data to the PC.

This means that when AFSK is transmitted by a Radio the bits are double modulated, Mrst in the Audio band by the TNC and
then FM modulated into the RF band by the Radio, and can therefore be called a FM-AFSK modulation. This chain of
modulations can be seen in the block diagram bellow, where the red block is done in the TNC and the blue, orange and purple
blocks are done in the Radio.

The pre-emphasis Mlter is commonly used when transmitting audio signals. It boosts higher frequencies to oZset increased
losses/attenuation of higher frequencies, improving SNR and therefore the audio quality. Most Radios apply this Mlter to the
audio input to improve the clarity of the transmitted audio signal. The pre-emphasis Mlter in Radios have a time constant of 75
uS and a gain of 6 dB per octave.

The typical modulation used by the Radios is a narrowband FM modulation (bandwidth of 12.5 kHz) using a frequency
deviation of 3000 Hz and transmitted in either the amateur VHF (144-148 MHz) or UHF (420-450 MHz) bands.

Digital Modulation ImplementationDigital Modulation Implementation
In this section I’ll explain how FM-AFSK can be implemented digitally. I use Scilab for this and the implementation can be used

as a starting point for a C implementation to run on a MCU. The code can be used in part, as the basis for a TNC and feed into
a Radio or in complete where the signal only needs to be feed to a mixer and up-converted to the desired frequency.

AFSK ModulationAFSK Modulation
The Mrst step is implementing the AFSK modulation. This seems to be trivial as it is only encoding ‘0’ as a 2200 Hz tone and ‘1’

as a 1200 Hz tone and this can be done by simply switching between two sine waves with the desired frequencies, a basic FSK
modulation, like in the code below:

function y = audioFSK(bitstream)
 bitrate = 1200;
 fMark = 1200;
 fSpace = 2200;
 index = 1;
 for i = 1:length(bitstream)
 for j = 1:(samplingFreq/bitrate)
 if bitstream(i) == 1
 y(index) = sin(2*%pi*j*(fMark/samplingFreq));
 index = index + 1;
 else
 y(index) = sin(2*%pi*j*(fSpace/samplingFreq));
 index = index + 1;
 end
 end
 end;
endfunction

The “samplingFreq” is how many points should be generated for each “second”. So for a bitrate of 1200 for each bit the code
generates points of a sign wave with either a frequency of 1200 or 2200 Hz. The resulting signal in the time domain is
shown in the Mgure below in Red with the corresponding bitstream in Green.

In this Mgure some hard transitions are visible when switching frequencies, illustrating a problem with this implementation. This
happens because the frequencies used to modulate the bits, mark and space frequency, are not a multiple of the bitrate, the
2200 Hz is the problem, and therefore when transitioning between bits the phase of the two signals are not aligned. Phase
discontinuities are undesirable because they generate a very wide spectrum, shown in the Mgure bellow.

To Mx this, and decreasing the bandwidth of the signal, a continuous phase has to be achieved. This is done using a Continuos
Phase Modulation, CPM or CPFSK. For this, Mrst how the frequencies are generated has to be changed. Instead of generating two
separate sine waves for the mark frequency and the space frequency a center frequency is used, , of 1700 Hz and the mark
and space frequency are generated by adding deviation of +500 or -500 Hz to the . This means that the bitstream needs to be
encoded into a so called Non-Return-to-Zero (NRZ) signal, , where the ‘0’ bit (space frequency) is encoded as a 1 and the ‘1’ bit
(mark frequency) as a -1.

Next the signal, the modulating signal, has to be transformed into a continuous signal with no discontinuities to get a
continuous phase. This is done by integrating the signal over time. An integral over any Mnitely valued function (which m(t) is
assumed to be) will not contain any discontinuities.

The combination of these changes results in the following equation describing the modulation, where the lower limit of the
integral, , changes to 0 for a causal signal which is:

For the integral the trapezoidal rule is used to calculate it in discrete time which is described in the following formula with N
equally spaced panels/slices:

With this the function that generates a continuous AFSK signal in Scilab is the following:

function y = audioCPFSK(bitstream)
 fCenter = 1700;
 fDelta = 500;
 bitrate = 1200;
 bitstream = bitstream * 2 - 1; //Convert to NRZ
 steps = (samplingFreq/bitrate);
 y(1) = 0;
 m = 0;
 for i = 2:length(bitstream)*steps
 //"Interpolate" the bitstream to steps points per bit
 index = ceil(i/steps);
 indexPrev = ceil((i - 1)/steps);
 //Integration of the bitstream with trapezoidal rule
 m = m + ((bitstream(indexPrev) + bitstream(index))/2);
 //"FM" Modulation
 y(i) = cos(2*%pi*i*(fCenter/samplingFreq) - 2*%pi*m*(fDelta/samplingFreq));
 end;
endfunction

The resulting signal in the time domain is shown in the Mgure below in Red with the corresponding bitstream in Green.

This Mgure clearly shows that the transitions are now much more smoother with no more phase discontinuities when switching
frequencies, which results in a narrower spectrum of the signal as can be seen in the Mgure bellow:

This completes the AFSK part of the FM-AFSK modulation. This is the modulation done in a TNC with the resulting audio wave
being injected into a Radio.

Pre-EmphasisPre-Emphasis
As seen in the beginning, a audio signal input into a Radio is emphasized by a pre-emphasis Mlter. The pre-emphasis Mlter is

originally an analog Mrst order high-pass Mlter, like in the Mgure bellow, with a time constant of 75 uS and a gain of 6 dB per
octave. This is equivalent to having a low cut-oZ frequency of 2120 Hz and a gain of 20 dB/decade. They often also have an
upper cut-oZ frequency outside the audio band, at around 30 kHz.

Based on this, the transfer function of the pre-emphasis Mlter can be calculated. Knowing that a pole introduces a gain of -20
dB/decade and a zero a gain of 20 dB/decade, the above Mlter has a zero at 2120 Hz and a pole at ~30 kHz which results in the
following transfer function:

To implement this Mlter in the digital domain, the pole can be ignored, as it is outside of the frequency range used and often
even above the Nyquist limit, . This results in a single zero Mlter, which can be implemented by a Mrst order FIR Mlter with the
following diZerence equation:

Where the value of the coegcients are and , with and being the sampling frequency. The
implementation of this Mlter, in Scilab, is visible bellow:

function y = Emphasis(signal)
 fc = 2120;
 a = exp(-2*%pi*fc*1/samplingFreq); //Calculate Filter coefficient
 g = 50; //Gain to scale output to ~[-1;1]
 y(1) = 0;
 for i = 2:length(signal)
 //FIR HPF
 y(i) = (signal(i) - a*signal(i-1));
 y(i) = g*y(i);
 end
endfunction

With this the higher frequencies of a signal are now boosted, emphasized, or better the lower frequencies are attenuated. This
can be seen in the Mgure bellow, where in green is the AFSK signal without the emphasis Mlter and in red with the emphasis Mlter:

It is clearly visible that the higher frequency, 2200 Hz, has a higher amplitude in contrast to the lower one, 1200 Hz. There are
also, again, some very harsh discontinuities visible, but in contrast to the ones seen when designing the AFSK modulator, these
ones are due to amplitude and not phase discontinuities of the signal and therefore they don’t increase the signal bandwidth.
This can be seen when looking at the spectrum of the emphasized signal, shown in the Mgure bellow. In green is the spectrum of
the AFSK signal without the emphasis Mlter and in red with the emphasis Mlter:

The spectrum also shows very well the boost of higher frequencies, or the attenuation of the lower frequencies, and that the
signal bandwidth remained the same. This is the signal that is used in the next step, the FM modulation, to get the complete FM-
AFSK modulation.

FM ModulationFM Modulation
The Mnal step to get the FM-AFSK modulation is to implement the FM modulator. Because it is not practical to directly

modulate the signal onto the carrier RF frequency a intermediate frequency (IF) is used. I used a IF frequency of 5200 Hz, this
because it is the IF frequency used for the AFSK mode in my VUHFRadio. Another parameter is the frequency deviation, or
modulation index, which for AFSK is 3000 Hz. When using a sinusoidal baseband signal, which AFSK is, the FM modulation is
deMned by the following function:

Where is the frequency deviation, 3000 Hz, is the maximum frequency of the baseband signal, 2200 Hz, the carrier or
intermediate frequency, 5200 Hz, and the baseband signal. This is implemented in Scilab using the code bellow, where

 is substituted with the AFSK baseband signal.

function y = FMModulation(baseband)
 fCenter = 5200;
 fDeviation = 3000;
 fMax = 2200;
 mIndex = (fDeviation/fMax);
 for i = 1:length(baseband)
 y(i) = cos(2*%pi*i*(fCenter/samplingFreq) + mIndex*baseband(i));
 end
endfunction

The output of this function is the FM-AFSK modulation and it’s time domain signal is visible in the Mgure bellow. In green is the
baseband AFSK signal and orange the FM-AFSK signal.

The corresponding spectrum of the FM-AFSK signal is visible in the Mgure bellow:

With this the digital implementation of the FM-AFSK modulation is completed. This can now be ported and optimized to run on
a MCU, and by feeding the generated output into a Mixer it can be up-convert it to the desired RF frequency and transmitted
over air.

Digital Demodulation ImplementationDigital Demodulation Implementation
Now that the modulation is implemented let’s see how FM-AFSK can be demodulated. The modulation part implemented

before will be used to test and verify the demodulation code. Starting with an overview of the demodulation chain, as was done
with the modulation, it is visible in the Mgure below that the chain has the same basic blocks as the modulation just in reverse
order. As was the case with the modulation, the purple, orange and blue part is done in the Radio and the red in the TNC, when
using HAM Radios.

As was the case with the modulation, the full processing chain outside the RF part i.e. after downconversion is implemented in
digital using Scilab. This poses the Mrst problem, it is common that the downconversion mixer is a quadrature mixer meaning
that it outputs the downconverted (IF signal) in-phase (I) and in quadrature (Q), a 90° phase shift to the in-phase signal,
simplifying and improving the performance of the demodulation stage. In this case, as the modulation code outputs the
baseband (IF signal) with only the in-phase part, the quadrature component has to be calculated. This is done using the Hilbert
Transform.

Hilbert TransformHilbert Transform
The Hilbert Transform is a operation that phase shifts a signal by 90°, which is what is needed to get the Q signal from only the

I signal. One way to implement the Hilbert Transform is using a FIR Mlter with an odd number of coegcients (even order) and odd
symmetry (antisymmetric), also known as a Type 3 FIR Mlter, which is the method used here. This results in a band-pass Mlter with
a normalized band-pass bandwidth of around 0.95, this is .

The FIR Mlter block diagram used for the Hilbert Transform can be seen in the Mgure below, with the main diZerence to a
normal FIR Mlter being the tap in the middle of the delay line for the I signal. This is because the FIR Hilbert Transform does not
only shift the output signal by 90° but it is also delayed by half the delay line length, so the I signal also needs to be delayed the
same amount. This is done by taping the middle of the delay line. In the block diagram is a one sample delay and a[n] are
the Mlter coegcients.

The Scilab implementation of this Mlter is shown below. The delay line is implemented with a circular buZer, dLine, where is
dLine[dLineIndex], is dLine[dLineIndex - 1], is dLine[dLineIndex - 2], and so on. The function takes an input signal and an
array of the FIR coegcients.

function [i,q] = HilbertTransform(signal, a)
 dLine = [1: length(a)-1];
 dLineIndex = 0;
 for i = 1:length(signal)
 //Calculate index of the center of the delay line
 index = pmodulo(dLineIndex - (length(dLine) / 2), length(dLine)) + 1;
 i(i) = dLine(index);
 //FIR filter calculations
 q(i) = signal(i) * a(1);
 for j = 1:length(dLine)
 index = pmodulo(dLineIndex - j, length(dLine)) + 1;
 q(i) = q(i) + a(j+1) * dLine(index);
 end
 //"Shift" delay line samples
 dLineIndex = dLineIndex + 1;
 if dLineIndex > length(dLine) then
 dLineIndex = 1;
 end
 dLine(dLineIndex) = signal(i);
 end
endfunction

To calculate the FIR Mlter coegcients in Scilab, the function hilb() is used. The function takes as arguments the number of
coegcients to be calculated and returned, the Mlter shaping type used, and additional Mlter shaping type parameters. For this
example I used 65 coegcients and using a Kaiser-window with parameter set to 8. I used this because I read here that using a
Kaiser-window with parameter 8 gives “pretty good” audio performance and we are working with an “audio” signal so why not. The
Hilbert Transform FIR Mlter coegcients are therefore given by:

a = hilb(65, 'kr', 8);

In the Mgure below the calculated coegcients for diZerent Mlter lengths/order, number of coegcients is shown. The anti-
symmetry is visible and also that the odd coegcients are always 0. This means that the implementation of the Mlter can be
optimized a lot by ignoring the odd coegcients and by exploring the anti-symmetry.

The Mgure below shows the resulting Mlter shapes when using those coegcients. It is visible that only a Mlter with an order
greater then 16 has a unitary gain bass-band and that the normalized bandwidth of 0.95 is only achieved with an order greater
then 64.

In order to not distort the baseband signal when passing through the Hilbert Transform FIR Mlter, the Mlter bandwidth needs to
be large enough to include the whole baseband signal and ideally the baseband signal is centered around , 0.25, which is not
always achievable or even desirable. In the Mgure below the spectrum of the baseband signal with the Mlter shape is visible,
showing that it Mts inside the Mlter bandwidth even though the center frequency of the baseband is not .

The output of the Hilbert Transform FIR Filter can be seen in the Mgure below. In red the I signal is shown, this is the baseband
signal but delayed by half the Mlter delay line length, and in green the generated Q signal. It can be seen that the Q signal is
indeed 90° oZset in relation to the I signal. With this both I and Q signals are now present.

FM DemodulationFM Demodulation
To demodulate a FM signal the frequency variation of the incoming signal has to be extracted. This can be done with many

diZerent techniques, maybe the most well known one is using a PLL where the control signal of the VCO is the demodulated
signal, the frequency variation of the carrier wave. This type of demodulator is called coherent as it tracks the input signal and
generates an error signal, the demodulated signal. This type was not used here due to higher complexity.

The other type of FM demodulators used are non-coherent ones, for example quadrature demodulators, the ones used here.
Quadrature demodulators use, as the name suggests, I and Q data of the modulated signal to extract the frequency variation.
These demodulators extract the frequency variation in two stages. First the phase information of the signal is extracted and by
derivation of the the phase signal over time, the frequency change over time is obtained.

The quadrature signals can be seen as the real (I) and imaginary (Q) component of the signal. With this in mind, and recording
how the phase of a imaginary number is calculated, the instantaneous phase of the signal is given by . And by

applying the derivation over time to this, the frequency variation is obtained, . This is the demodulation
represented in the block diagram of the full demodulation chain.

By taking into account that in a discrete signal the derivate is simply the diZerence between the current sample and the
previous one, . And using the subtraction rule of functions, , the
above equation can be written as:

This is the equation used to demodulate the FM signal and the implementation in Scilab is shown below:

function y = FMDemodulation(signalQ, signalI)
 iDelayLine = 0;
 qDelayLine = 0;
 y(1) = 0;
 for i = 2:length(signalQ)
 //Im(Sn)*Re(Sn+1) - Re(Sn)*Im(Sn+1)
 numerator = signalQ(i)*iDelayLine - signalI(i)*qDelayLine;
 //Re(Sn)*Re(Sn+1) + Im(Sn)*Im(Sn+1)
 denominator = signalQ(i)*qDelayLine + signalI(i)*iDelayLine;
 //Like atan2 in C
 y(i) = atan(numerator, denominator);
 //One Sample delay line
 iDelayLine = signalI(i);
 qDelayLine = signalQ(i);
 end
endfunction

There is another form of the arctan demodulation that is used, and is also implemented here. This second version is obtained
by calculating the derivative of the function, , but because x in this case is a function this is:

Because is actually , the quotient rule of the derivative can be used:

Now by using this result in the previous equation and by multiplying everything by to simplify the equation, the Mnal
equation is obtained:

In discrete time the simpliMed block diagram of this equation is shown bellow:

And the corresponding Scilab implementation is the following:

function y = FMDemodulation2(signalQ, signalI)
 iDelayLine = [0,0];
 qDelayLine = [0,0];
 for i = 1:length(signalQ)
 //Calculate delta values,
 dI = signalI(i) - iDelayLine(2);
 dQ = signalQ(i) - qDelayLine(2);
 //Multiplication part
 mI = iDelayLine(1) * dQ;
 mQ = qDelayLine(1) * dI;
 //Possible Scaling
// mA = 1 / (signalI(i)*signalI(i) + signalQ(i)*signalQ(i));
 mA = 1;
 y(i) = mA * (mI - mQ);

sampl
i
ngFreq

1200

F

C

F

C

m
(t)

m
(t)

m
(t)

−∞ m
(t)

s
(t) = cos

(2πF

c

t − 2πΔF
∫

t

−
∞

m
(
α

)d
α

)

∫

b

a

f(x)dx ≈

Δx

2

N

∑

i=1

(f(x

i
−1

) + f(x

i

))

H(s) =

s + 2π2120

s + 2π30000

F

S

2

y
(
n

) = b

0

x
(
n

) + b

1

x
(
n − 1)

b

0

= 1 b

1

=
e

−2∗
π

∗
F

C

∗

1

F

S

F

C

= 2120 F

S

y
(t) =

cos
(2πF

c

t +

ΔF

F

m

sin
(2πf

x

t))

Δ
F F

m

F

c

sin(2πf

x

t)

sin(2πf

x

t)

BW = 0.95

F

S

2

Z

−1

Z

−1

Z

−2

Z

−3

F

S

4

F

S

4

θ = arctan (

Q

I

)

f =

d

d
t

arctan (

Q

I

)
dt

dx(n)

d
t

= x(n) − x(n − 1) arctan arctan(x) − arctan(y) = arctan (

x−y

1+xy

)

f(n) = θ(n) − θ(n − 1) = arc
t
an

(

Q(
n

)I(
n − 1) − I(

n
)Q(

n − 1)

Q(n)Q(n − 1) + I(n)I(n − 1)

)

arc
t
an

d

dt

arc
t
an(x) =

1

1+
x

2

d

dt

arc
t
an

(f(
x

)) =

1

1 + x

2

df(
x

)

dt

f(
x

)

Q
(
x

)

I
(
x

)

d

Q(x)

I(x)

dt

=

I(x)

dQ(x)

d
t

− Q(x)

dI(x)

d
t

I(x)

2

I(x)

f(x) = Δθ(x) =

I(
x

)

dQ
(
x

)

dt

− Q(
x

)

dI
(
x

)

dt

I(x)

2

+ Q(x)

2

WelcomeWelcome ProjectsProjects Bits & PiecesBits & Pieces ReviewsReviews ToolsTools AboutAbout

https://github.com/NotBlackMagic
https://hackaday.io/NotBlackMagic
https://youtube.com/channel/UCKK1zUXy7mRo5jNBqCo_gwQ?
https://instagram.com/notblackmagic_
https://twitter.com/NotBlackMagic1
https://www.notblackmagic.com/
https://www.notblackmagic.com/projects/
https://www.notblackmagic.com/bitsnpieces/
https://www.notblackmagic.com/reviews/
https://www.notblackmagic.com/tools/
https://www.notblackmagic.com/about/

Site Updated: 18 July 2021

 y(i) = mA * (mI - mQ);
 //Shift delay line samples
 iDelayLine(2) = iDelayLine(1);
 iDelayLine(1) = signalI(i);
 qDelayLine(2) = qDelayLine(1);
 qDelayLine(1) = signalQ(i);
 end
endfunction

Now by using I and Q signals generated by the Hilbert Transform in the FM demodulation stage, the demodulated signal is
obtained and is visible in the Mgure below. The Mrst implementation is shown in red and the second one in green.

The Mrst thing that stands out is that the lower frequencies are attenuated in comparison to the higher ones. This means that
both FM demodulators implemented present a high-pass Mlter type characteristics. No pre-emphasis Mlter was used in the
original modulated signal so the visible low frequency attenuation is only from the FM demodulator, if pre-emphasis was used
this attenuation would be even greater. The Mgure also shows that the Mrst demodulator, in red, generates a slightly less
distorted signal and is therefore the signal used in the next steps.

To compensate for the low frequency attenuation a Mrst order low pass Mlter can be used, with a cut-oZ frequency at least 1
decade lower then the lowest frequency present in the demodulated signal which in this case is 1200 Hz. This is basically the
same Mlter that is used for the de-emphasis stage and the implementation of which will be explained in the next section. The
only diZerence is the cut-oZ frequency used here is lower, around 100 Hz. The result of using this compensation Mlter can be seen
in the Mgure below where the original FM demodulated signal is shown in green and the same signal after the high-pass Mlter is
shown in red.

De-EmphasisDe-Emphasis
The next step is to implement the de-emphasis Mlter, the “inverse” of the pre-emphasis Mlter. This will remove the emphasis of

the higher frequencies generated by the pre-emphasis Mlter in the modulator/transmitter. As with the pre-emphasis Mlter, the de-
emphasis Mlter is implemented in the radios as a Mrst order analog Mlter. The de-emphasis Mlter, being the opposite of the pre-
emphasis Mlter, is a high-pass Mlter with the same low cut-oZ frequency (2120 Hz), high cut-oZ frequency (30 kHz) and gain (20
dB/decade) as the pre-emphasis Mlter. The de-emphasis Mlter is represented in the Mgure below.

The transfer function of the de-emphasis Mlter is also just the inverse of the pre-emphasis Mlter:

The de-emphasis Mlter can be implemented in the digital domain as a Mrst order IIR Mlter. This time the zero can be ignored,
creating a single pole Mlter with the following diZerence equation:

Where the value of the coegcients are and , with and being the sampling frequency.
The implementation of this Mlter, in Scilab, is visible bellow:

function y = DeEmphasis(signal)
 fc = 2120;
 a = exp(-2*%pi*fc*1/samplingFreq); //Calculate Filter coefficient
 g = 1; //Gain to scale output to ~[-1;1]
 y(1) = signal(1);
 for i = 2:length(signal)
 //IIR LPF
 y(i) = ((1-a)*signal(i) + a*y(i-1));
 y(i) = g*y(i);
 end
endfunction

To test the implemented de-emphasis Mlter, the output of the pre-emphasis Mlter is feed into it and the output has to return to
the initial from. The result of this is shown in the Mgure below. In green is the output of the pre-emphasis Mlter, with the lower
frequencies attenuated, and in red the output of the de-emphasis Mlter, with all frequencies having the same amplitude again.

AFSK DemodulationAFSK Demodulation
After de-emphasis, or if the audio signal comes from a HAM Radio, the audio signal is now demodulated so that the

transmitted bits can be retrieved. The AFSK demodulation is just a FSK demodulation, and as with the FM demodulation can be
done in a coherent way or in a non-coherent way. Here, as with the FM demodulation, only non-coherent methods are used. It is
also possible to use the same demodulation methods used for FM demodulation, with some post processing, but there are more
egcient demodulations available. Also the FM demodulations implemented here both relied on quadrature data and therefore a
Hilbert Transform which is computationally expensive and in the FSK case not necessary.

Two diZerent non-coherent non-quadrature FSK demodulations will be presented and implemented. The Mrst one is the normal
example of a FSK non-coherent demodulation where the two frequencies that encode the bits, space and mark frequencies, are
band-pass Mltered and analyzed. The analysis of the band-passed signals is done by an envelop detector of the Mltered signals
and then comparing both envelops to detect which bit value was transmitted. This is the method displayed in the FM-AFSK
demodulation block diagram.

For this implementation, Mrst the two band-pass Mlters have to be designed and implemented. For this a FIR Mlter can be used
with the band-pass center frequency being the mark/space frequency and with a bandwidth such that the other frequency is
attenuated signiMcantly. As an example here a FIR Mlter with 17 coegcients is used, with a bandwidth of 400 Hz for each
frequency. The two Mlter shapes are visible in the Mgure below, with the AFSK spectrum as a reference to see that the center
frequencies of both Mlters are correct.

Although it may seem that the Mlters are not very well centered, specially the mark frequency one, they are good enough and
represent a good compromise between selectivity and computational requirement. Something I also noticed is that if the
number of coegcients of the FIR Mlter is much larger then the band-pass FIR Mlters don’t work as intended. I guess that
this has to due with delay introduced by the Mlters.

The implementation of this FSK demodulator in Scilab is shown below. The FIRFilter function is basically the same as the
Hilbert Transform function, and the coegcients are calculated by the glt function. The envelope detection can be done in many
ways, here a square-law envelope detector is implemented, this is very similar to a diode and capacitor circuit in the analog
domain. The signal is squared and then low-pass Mltered. The low-pass Mlter is implemented the same way as the de-emphasis
Mlter, but with a cut-oZ frequency of 1000 Hz, slightly below the bit-rate. Finally the decision is done by simply subtracting the
output of the space frequency arm from the mark frequency arm.

function y = FSKDemodulation(signal)
 //Space and Mark frequency BPF
 space = FIRFilter(baseband, ffilt("bp", 17, 2000/samplingFreq, 2400/samplingFreq));
 mark = FIRFilter(baseband, ffilt("bp", 17, 1000/samplingFreq, 1400/samplingFreq));
 //Space and Mark Envelope Detection
 spaceEnvelope = LPF(space^2, 1000);
 markEnvelope = LPF(mark^2, 1000);
 y = markEnvelope - spaceEnvelope;
endfunction

The other FSK demodulator implemented is the cross-correlation demodulation. In this the mark and space frequencies are
“Mltered” by using correlation with a locally generated mark and space frequency. For each frequency a correlation block is used,
this could be expanded to any number of additional frequencies and can therefore also be used for 4-FSK or 8-FSK
modulations. The correlation is done by multiplying the modulated signal by locally generated in-phase and in quadrature (sine
and cosine) signal with the frequency of the signal that should be “Mltered”, in this case the mark or space frequency. The result
of this is then integrated over one bit period, squared and summed. The output of all correlations are then input into a decision
block which decides which bit (or symbol) was transmitted. The block diagram of this demodulator is shown in the Mgure below:

The digital implementation of this demodulator is straight forward. The integration part is the sum of the N previous samples,
with N being the number of samples in a bit period, . The decision is done by subtracting the output of the space frequency
arm from the mark frequency arm. The Scilab implementation of this demodulator is shown below:

function y = FSKDemodulation2(signal)
 fMark = 1200;
 fSpace = 2200;
 for i = 1:length(signal)
 markI(i) = signal(i) * sin(2*%pi*i*(fMark/samplingFreq));
 markQ(i) = signal(i) * cos(2*%pi*i*(fMark/samplingFreq));
 spaceI(i) = signal(i) * sin(2*%pi*i*(fSpace/samplingFreq));
 spaceQ(i) = signal(i) * cos(2*%pi*i*(fSpace/samplingFreq));
 //Integration over bit period, samplingFreq/1200
 markIInteg = 0;
 markQInteg = 0;
 spaceIInteg = 0;
 spaceQInteg = 0;
 for j = 0:(samplingFreq/1200 - 1)
 if (i-j) > 0 then
 markIInteg = markIInteg + markI(i-j);
 markQInteg = markQInteg + markQ(i-j);
 spaceIInteg = spaceIInteg + spaceI(i-j);
 spaceQInteg = spaceQInteg + spaceQ(i-j);
 else
 markIInteg = markIInteg;
 markQInteg = markQInteg;
 spaceIInteg = spaceIInteg;
 spaceQInteg = spaceQInteg;
 end
 end
 s1 = markIInteg*markIInteg + markQInteg*markQInteg;
 s2 = spaceIInteg*spaceIInteg + spaceQInteg*spaceQInteg;
 y(i) = s1 - s2;
 end
endfunction

The demodulated signal output for each of the two demodulators is visible in the Mgure below. In red the output of the cross-
corelation implementation is shown and in green the output of the band-pass Mlter implementation is shown. The results look
similar but it can be seen that the cross-corelation demodulation outputs a more well deMned signal. It is also less
computationally intensive then the band-pass Mlter demodulation as that one uses two high order FIR Mlers which are
computationally intensive.

The Mnal step would now be recovering the bit clock and extracting the bits.

H(
s
) =

s
+ 2π30000

s + 2π2120

y
(
n

) = b

0

x
(
n

) +
a

1

y
(i − 1)

b

0

= (1 − a

1

) a

1

=
e

−2
∗

π

∗

F

C

∗

1

F

S

F

C

= 2120 F

S

F

Mar
k

/
S

pace

F

S

F

b
itrate

F

S

